Shortcuts

 Sitemap Contact Newsletter Store Books Features Gallery E-cards Games

 ••• Related links Puzzles workshops for schools & museums. Editorial content and syndication puzzles for the media, editors & publishers. Abracada-Brain Teasers and Puzzles! Numbers, just numbers... Have a Math question? Ask Dr. Math! ••• ••• Logic smile! Life is full of misery, loneliness, and suffering - and it's all over much too soon!      - Woody Allen One martini is all right, two is two many, three is not enough...      - James Thurber You can't trust water: Even a straight stick turns crooked in it!      - W.C. Fields •••

# Previous Puzzles of the Month + Solutions

May-June 2009, Puzzle nr 121
Back to Puzzle-of-the-Month page | Home

Puzzle # 121 Difficulty level: , general math knowledge.

 Circle vs Square    The diameter a of the large semicircle below is 10 cm long. Knowing that one of the vertices of the square meets the circumference of the small circle at point P (see diagram above), try to guess the area of the blue square WITHOUT using trigonometry! Keywords: sangaku, tangent property, bisector theorem. Related puzzles: - Perpendicular or not? - Ratio of similar triangles. - Area incognita Il diametro a del semicerchio qui sopra vale 10 cm; sapendo che un vertice del quadrato (punto P) appartiene anche alla circonferenza piccola, qual è l'area del quadrato? È vietato utilizzare la trigonometria per risolvere questo problema! Parole chiave: sangaku. Suggerisci un'altra soluzione Chiudi - La surface X Le diamètre a du demi-cercle ci-dessus vaut 10 cm; sachant qu'un des sommets du carré (point P) appartient aussi à la circonférence du petit cercle, peux-tu nous dire quelle est l'aire du carré bleu? Il est interdit d'utiliser la trigonométrie pour résoudre ce problème! Mots clés: sangaku. Propose une autre solution Fermer Source of the puzzle: BrainTrainer, issue #23. © G. Sarcone. You cannot reproduce any part of this page without prior written permission.

 More Math Facts behind the puzzle Angle bisector and proportions If a segment bisects an angle of a triangle then it divides the two segments on either side proportionally: CA / CP = BA / PB and CA x PB = CP x BA Angle bisector theorem on Wikipedia.

Back to Puzzle-of-the-Month page | Home